Skip to content

Blackbook.ai

University Student Early Stress Warning Indicator

A large sandstone university in Queensland engaged Blackbook.ai to find a way to identify students who were at risk of mental health distress as this was a pre-cursor to dropping out of their course.

Client Industry

Education

Technology stack

Predictive Analysis

Machine Learning

Industry

Education

Technology stack

Predictive Analysis

Machine Learning

Industry

Education

Technology stack

Predictive Analysis

Machine Learning

The challenge

The university wanted to be able to find a way to identify students who were at risk of mental health distress in order to provide students with appropriate guidance and support to help combat student drop outs.

The solution

An application of the Early Warning System was used to detect early signs of mental health distress in students.

Feature engineering was used to create a student vector that combines demographic data, past and current enrolment information and activity recorded online such as Blackboard, WiFi, library and edX activity. Using the student vector, a classification model was trained and stored for inference. 

The outcomes

The model created by Blackbook is capable of flagging students that are potentially experiencing mental health issues.

From this project, we found that predicting outcomes based on human behaviour cannot be approached with a one-size-fits-all approach. It is the deviation from the norm at the individual level that is important, and using early warning systems powered by machine learning can efficiently uncover these deviations in a timely manner.

Related case studies

Visualising Data & Processes​

Enhance the experience of your Power BI reports and dashboards by applying graphic design principles and user experience design to effectively communicate complicated data and processes.

Read more >
error: Content is protected !!
Services
About